To learn about the importance of light in organic reactions.
Laws of photochemistry. Fate of excited molecules - Jablonskii diagram, intersystem crossing, energy transfer, photosensitization, quenching, quantum yield, Stern-Volmer equation. Photochemical reactions of ketones – alpha cleavage or Norrish type I cleavage, gamma hydrogen transfer or Norrish type II cleavage; photo reductions; Paterno-Buchi reactions; photochemistry of α,β-unsaturated ketones, β,γ-unsaturated ketones, cyclohexadienones (cross conjugated and conjugated).
Photochemistry of alkenes: intramolecular reactions of the olefinic bond – cis-trans isomerisation (stilbene), cyclization reactions, rearrangement of 1,4 and 1,5-dienes, di-π methane rearrangement.
Photochemistry of aromatic compounds: photochemical rearrangement, photostationary state, 1, 3, 5 – trimethyl benzene to 1, 2, 4-trimethyl benzene.
General characteristics, classification, molecular orbital symmetry.
Electrocyclic reactions: theories of explanation (FMO, Woodword-Hoffmann and PMO approach), frontier orbitals, electrocyclisation and reterocyclisation of 1,3 butadiene ,cyclobutadiene and ,hexatriene derivatives, allylic cations(1,5 diphenylpentadienyl cation) and allylic anions (1,5 diphenylpentadienyl anion), ring opening in bicycle [4.1.0] heptane derivatives, valence tautomerism.
Cycloaddtion reactions: 2+2, 4+2 cycloaddition, 1, 3-dipolar cycloaddition and cheletropic reactions; stereoselectivity (endo, exo), stereospecific and regioselective hydrogen reactions, Lewis-acid catalysis in Diels’ Alder reaction.
Sigmatropic rearrangements: suprafacial and antarafacial shifts of H, sigmatropic shifts involving carbon moieties, 3, 3- and 5, 5-sigmatropic rearrangements; Claisen, Cope and Aza-Cope rearrangements; isomerization of divinyl cyclopropane; fluxional tautomerism (bullvalene); ene reaction.
Synthons and synthetic equivalents, disconnection approach, functional group inter-conversions, the importance of the order of events in organic synthesis, one group C-X and two group C-X disconnections, chemoselectivity, reversal of polarity, cyclisation reactions, amine synthesis; principle of protection of alcohol, amine, carbonyl and carboxyl groups.
One and Two group C-C disconnections:
Alcohols and carbonyl compounds, regioselectivity, alkene synthesis, uses of alkynes and aliphatic nitro compounds in organic synthesis; Diels’ Alder reaction, 1,3-difunctionalised compounds, α,β-unsaturated carbonyl compounds, control in carbonyl condensations, 1,5-difunctionalised compounds, Micheal addition and Robinson annelation.