IR spectroscopy: vibrating diatomic molecule- energy of diatomic molecules as simple harmonic oscillator, zero point energy, force constant, bond strengths, vibrational transitions and selection rules, anharmonicity, Morse potential energy diagram, vibrational transitions and selection rules; vibrational-rotational spectroscopy - breakdown of Born – Oppenheimer approximation rules, selection rules, P, Q, R branches; vibration of poly atomic molecules- symmetry and fundamental vibrations, normal mode of vibrations, skeletal vibrations, group frequencies, overtones, hot bands, fermi resonance bands; influence of rotation on the spectra of polyatomic molecules – parallel and perpendicular vibrations in linear and symmetric top molecules.
Raman spectroscopy: classical and quantum theories of Raman effect, Rayleigh and Raman scattering, stokes and antistokes radiation, molecular polarizability, selection rules; rotational Raman spectra – linear molecules, symmetric top and spherical top molecules; vibrational Raman spectra- symmetry and Raman active vibrations, rules of mutual exclusion; rotation- vibration Raman spectra of diatomic molecules, polarized and depolarized Raman spectra.
Self Study: Resonance Raman spectroscopy, coherent antistokes Raman spectroscopy CARS (brief idea)